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Abstract

The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the
ground to address the transport problems of growing modern urban areas. Such analysis can be carried out using
numerical methods but models and therefore computing times can be large. There is a need to be able to apply very fast
calculations that can be used in tunnel design and studies of environmental impacts. Taking advantage of the fact that
tunnels often have a two-dimensional geometry in the sense that the cross section is constant along the tunnel axis, it is
useful to evaluate the potential uses of two-dimensional models before committing to much more costly three-dimensional
approaches. The vibration forces in the track due to the passage of a train are by nature three-dimensional and a complete
analysis undoubtedly requires a model of three-dimensional wave propagation. The aim of this paper is to investigate the
quality of the information that can be gained from a two-dimensional model of a railway tunnel. The vibration
transmission from the tunnel floor to the ground surface is analysed for the frequency range relevant to the perception of
whole body vibration (about 4-80 Hz). A coupled finite element and boundary element scheme is applied in both two and
three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel
dug with the New Austrian tunnelling method (NATM).
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years great interest has been shown in reduction of vibration in buildings caused by railway traffic.
This is a concern both in the design of new railways and in the modification of existing ones. In densely
populated areas, trains often run in tunnels. At these locations the transmitted vibration is an important
environmental issue [1] and numerical models are required to complement empirical prediction models [2] and
for tunnel structure design [3].

For each of these purposes, two-dimensional models have been used; even if the problem is by nature three-
dimensional, see, for example, Ref. [4]. Justification for this is based on the fact that the train may be regarded
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as a long line of incoherent vibration sources. However, rather than using models to provide predictions of
absolute vibration levels, they are more likely to be used to predict the effects of changes made to the tunnel
structure [2,3], and it is assumed that such changes are reasonably predicted using a two-dimensional model.

The main reason that a two-dimensional model is preferred is that the numerical analysis with a three-
dimensional model requires far more computing time such that it precludes parametric study. This remains the
case even though, recently, so-called ‘two-and-a-half-dimensional models’, which calculate a three-
dimensional field from a two-dimensional geometry, have been developed [5,6].

Here, two tunnel structures are considered. Firstly, a cut-and-cover tunnel with masonry abutment walls is
analysed with both a two- and a three-dimensional model. The performance of the two-dimensional model is
tested against that of the three-dimensional model in the comparison of different designs of the tunnel floor.
Secondly, a tunnel is analysed, which has been built using the New Austrian tunnelling method (NATM) [7].
The changes in the response to either a change in the tunnel depth or the application of a wave impeding block
(WIB) under the tunnel floor are compared with both a two- and a three-dimensional model.

The models are based on the combined finite element (FE) and boundary element (BE) methods. Solid FEs
or BEs are used to model the tunnel. BEs are used to model the surrounding soil. Here the BE method is
superior to the FE method due to its inherent ability to model radiating waves. Computer programs for both
two- and three-dimensional elastodynamic coupled structure—soil analysis in the frequency domain have been
developed. A detailed description of the FE method for elastodynamic analysis may be found, for example, in
the book by Petyt [8]. The BE part of the model is an extension of the theory presented by Dominguez [9],
which has been modified to account for open domains and to allow coupling with FEs. Here standard three-
noded elements are used in the two-dimensional analysis and nine-noded quadrilateral elements are applied in
the three-dimensional analysis.

2. Theory
2.1. Boundary elements for an open domain

In the frequency domain, the equation of motion and the boundary conditions for a viscoelastic two- or
three-dimensional body Q with the surface I' read
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Here U;(x, w) is the complex amplitude of the displacement field, pB;(x, w) are the body forces and g;;(x, w) are
the stresses that may be computed from the displacements by the constitutive relation. As indicated in Eq. (2)
the displacement amplitude U;(x,w) is given on one part of the boundary, I'y, and the surface traction
Pi(x, w) = 0;(x, w)n;(x) is given on the remaining part of the boundary, I'p. Here n;(x) are the components of
the outward unit normal to the surface. In two dimensions the indices are 1, 2, and in three dimensions the
indices are 1, 2, 3. Summation is performed over repeated indices.

In order to obtain the BE formulation of Eq. (1), a second state Uj(X, w;y) is identified as the solution to the
equation of motion

007 (X, w3 y)
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where d(x — y) is the Dirac delta function and J; is the Kronecker delta. Uj(x, w;y) is coined the fundamental
solution, or the Green’s function, and provides the response at the receiver point x in coordinate direction i to
a concentrated point force applied at the source point y in direction /, with the circular frequency @ and unit
amplitude. The fundamental solution is based on wave propagation in the full space and therefore only
represents body waves emanating from the source, i.e. dilatation and shear waves with phase velocities ¢p and
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cs, respectively. In three dimensions, U}(x,w;y) has a singularity of the order 1/r, whereas the geometric
dissipation in two dimensions is only of the order 1/./r. This difference should be kept in mind when two- and
three-dimensional models of wave propagation are compared.

The fundamental solution is applied as a weight function in the weak formulation of the equation of motion
(1) for the physical field and vice versa. After some manipulations, and disregarding body forces in the interior
of the domain Q, Somigliana’s identity is derived:

Cai(x)Ui(x, o) + /F Py(x,0;)Ui(y,0)dI" = /F Uj(x,0;y)P(y,w)drI". 4)

Here Pj(x,w;y) is the surface traction related to the Green’s function, Uj(X,w;y). A full description and
derivation of Eq. (4) may be found in Ref. [9]. C;(x) only depends on the geometry of the surface I' at the
observation point. On a smooth part of the surface C;(x) = 1/26;. For other geometries, e.g. a corner, Cy(X)
takes other values. A general procedure, which may be used for the evaluation of the geometry constants, is
discussed below.

To obtain the BE formulation, the state variable fields on the boundary are discretized. Let P{w) and U{w)
be the vectors storing the displacements and tractions at the N; nodes in element j. The displacement and
traction fields over the element surface I'; then become

Ux,w) = ®i(x)Uj(w), P(x,m)=®;(x)P;(w), (%)

where ®(x) is a matrix storing the interpolation, or shape, functions for the element. This allows the unknown
values of the state variables to be taken outside the integrals in Eq. (4).

Finally, the two- or three-row matrices originating from Eq. (4) for each of the observation points may be
assembled into a single matrix equation for the entire BE domain,

HU = GP. (6)

Component (i, k) of the matrices H and G stores the influence from degree-of-freedom k to degree-of-freedom
i for the traction and the displacement, respectively, i.e. the integral terms on the left- and right-hand side of
Eq. (4). The C;(x) terms are absorbed into the diagonal of H. In the present analysis, the coupling of the BE
and FE models is carried out in terms of nodal forces (see Section 2.2), i.e. contributions from the surface
traction on different elements adjacent to a node are transferred to nodal forces via the shape functions. G is
thus a square matrix whereas in the native BE formulation G stores the influence from each element adjacent
to a collocation node separately in order to provide a means of representing discontinuous surface traction
over element edges.

Generally, the integrals of the H and G matrices are calculated using Gauss—Legendre quadrature.
However, at the forcing point the Green’s function for the surface traction is strongly singular of the order 1/r
in two dimensions and 1/r* in three. The diagonal terms of H thus have to be treated with caution. As
proposed by Dominguez [9], the traction Green’s function matrix is decomposed into its static part H® and the
dynamic (frequency dependent) residual part H®. By rigid-body-motion considerations, the diagonal terms of
H for a closed interior BE domain may then be calculated as

N
H; =H) +Hf =Hf - > Hj, 7
k=1k+#i
where N is the total number of degrees of freedom in the BE discretization. Note that the geometry constants
are absorbed in H. Hence they are determined simultaneously with the singular terms of the traction Green’s
function matrix. This is an advantage over nonlinear coordinate transformation techniques [11], in which the
geometry constants must be determined separately.

Unfortunately, the rigid-body-motion technique will only work for a closed domain. For an open domain,
such as the soil in the present case, Ahmad and Banerjee [12] proposed the use of so-called enclosing elements,
where a number of elements are added to transform the open domain into a closed domain, entirely for the
evaluation of the H® diagonal terms. The H® terms need only be calculated once and can then be used at all
frequencies of the analysis.
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Fig. 1. ‘False’ local boundary for the evaluation of diagonal terms in the static part of the traction Green’s function matrix.
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Instead of creating a closed domain for the entire domain at once, Jones et al. [13] suggested that a ‘false’
local boundary is formed for a few nodes at a time (see Fig. 1). They gave a detailed description for the two-
dimensional case, whereas Andersen and Jones [14] treated the three-dimensional case. The idea is that the
geometrical constants C;(x) only depend on the local geometry, and the singularities of the traction Green’s
function arise in the contributions from a node to itself. Hence only the local geometry of the surface need be
modelled correctly. The advantages of this method over the fully enclosing-elements technique are that the
local boundaries are more easily generated in an automatic manner, and that the technique may be applied to
any domain, open or closed. It is also faster to solve multiple small systems of equations for the local false
surfaces than to solve one big system of equations for a single global enclosure.

2.2. Coupling of FE and BE schemes

For some parts of the structure, the use of a BE region is not appropriate, either because the material is not
homogeneous over a large part of the structure or because the structure is thin. In these parts of the model FEs
may be used. In the present analyses, isoparametric FEs with quadratic interpolation functions are applied.
However, in parts of the concrete structure that are much stiffer than the surrounding soil and masonry (i.e.
wavelengths are much longer) linear interpolation is used across the thickness in the three-dimensional model
so that the number of degrees of freedom is kept to a minimum.

In order to couple a BE domain formulated in terms of surface tractions with an FE region with loads
applied in terms of nodal forces, a transformation matrix T is defined, such that F = TP. Here F is the vector
of nodal forces equivalent to the tractions P applied on the domain. The transformation matrix only depends
on the spatial interpolation functions, i.e. the shape functions, for the elements along the interaction
boundary. Hence, T may be determined once and for all and applied in all analyses with a given model
geometry. Subsequently, for each frequency the matrix

TG 'H = Ky )

defines an equivalent dynamic stiffness matrix for the BE domain. The coupled model is illustrated in Fig. 2,
and as indicated operation (8) turns the BE domain into a macro FE. In contrast to the dynamic stiffness
matrix, which is obtained in the FE method (see below), Kgg is fully populated and asymmetrical.

In the frequency domain, the equation of motion for an FE region takes the well-known form [8]

(—Maw? +iC + K)U = KggU = F, 9)

where M is the mass matrix and K is the static stiffness matrix. C is constructed from material loss factors and
the element stiffness matrices in line with the hysteretic damping model used in the BE equations. For a single
frequency of excitation the system matrices may be reduced to the dynamic stiffness matrix Kgg. Then the
matrices Kgg and Kgg for a number of sub-domains may be assembled into a global dynamic stiffness matrix
for the entire model. This may then be solved for the complex amplitude of displacement response to a set of
forces applied to any of the nodes in the model.
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Fig. 2. Combined finite element and boundary element model. Loads are applied as nodal forces.

As an alternative to the coupling method described above, in which the global solution is carried out in a FE
sense, the interaction forces between the FE part of the model and the BE domains may be described in terms
of surface traction. This requires the implementation of a number of auxiliary equations in order to manage
discontinuous traction around corners, etc. [10]. The coupling in terms of nodal forces has been selected in the
present work due to its simplicity.

3. Analysis of a cut-and-cover tunnel

Three cut-and-cover tunnel structures are analysed. In Section 3.1 the structures are described, and in
Section 3.2 the results of a two- and a three-dimensional model are compared.

3.1. Tunnel structure models

The first tunnel (referred to as Model 1 and shown in Fig. 3) represents the basis for comparison against
which structural changes have been made. It is 7.0 m deep, 12.0 m wide and accommodates two railway tracks.
The abutment walls have a thickness of 2.0 m and consist of masonry. The roof is 1.0 m deep and is attributed
properties to achieve a realistic bending stiffness and mass for a bridge roof that would usually be a composite
steel beam and concrete construction.

There is no floor; the tracks rest directly on the ground. The tracks are not modelled; a unit load
representing that exerted by the track is applied on the tunnel floor at the right-hand track position (Fig. 3).
The entire structure is surrounded by a homogeneous half-space of drained sandy soil.

In each of the Models 2 and 3 changes are applied to the tunnel structure.

® Model 2: The soil underneath the abutment walls is stiffened to a depth of 13 m.
® Model 3: The soil at the tunnel floor is replaced with a 1 m deep concrete slab.

Material properties for each of the model components are listed in Table 1, and Fig. 3 shows the combined
two-dimensional FE/BE mesh. The BEs are all 2m long, and the FEs have the dimensions 2 x 1 m? This
ensures a minimum of approximately three quadratic elements per wavelength at 80 Hz, which has been found
to be satisfactory [14]. In the two-dimensional model, a vertical load is applied over a 2m wide strip
with a total intensity of 1 N/m (in the along-tunnel direction). The three-dimensional model is constructed as
an extrusion of the model in Fig. 3 and the 1N load is applied over an area of 2 x 2m? i.. a single
quadrilateral BE.

The three-dimensional mesh is 22 m long in the track direction; 10 m on either side of the load. Use has been
made of the lateral symmetry of the structure for efficiency. The analysis is carried out twice. In the first case
the load is applied symmetrically, and in the second case it is applied anti-symmetrically around the plane of
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Fig. 3. Layout of the two-dimensional cut-and-cover tunnel models. Point forces are applied at the nodes indicated as ‘Point 1°. The fully
drawn part corresponds to Model 1, i.e. the reference model. Dashed parts (— —) are introduced in Model 2, and dotted parts (- - - - - ) are

introduced in Model 3.

Table 1
Material properties
Material E (MPa) v p (kg/m?) n
Concrete 20,000 0.30 2400 0.03
Masonry 10,000 0.15 2400 0.50
Soil 1000 0.20 2000 0.10
Stiffened soil 5000 0.20 2100 0.10
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Fig. 4. Nodal displacements in Model 2 at the four frequencies: (a) 10 Hz; (b) 20 Hz; (c) 40 Hz; and (d) 80 Hz: * two-dimensional results,
and O three-dimensional results.

symmetry. Subsequently the results are combined to obtain the response to an area load applied only to one of
the tracks and with a total magnitude of 1 N.

In the two-dimensional case, the geometric dissipation (i.e. with distance due to spreading of the wave front)
is smaller than in the three-dimensional case. In particular, Rayleigh waves are only subject to material
damping. Consequently, the error where the computation model is truncated is greater in the two-dimensional
model than in the three-dimensional case. However, a convergence study of the response in the two-
dimensional model indicates that the errors due to truncation of the mesh are localized to a small area near the
artificial edge, typically with an extent of one or two BEs. This is due to the fact that the impedance mismatch
between the modelled half-space and the full space forming the basis of the Green’s functions is small. Further,
the ground surface far from the tunnel serves almost entirely as a receiver, i.e. there is only little back-coupling
to the structure, see Fig. 4. Hence, the ground surface only needs to be taken to a distance of 24 m from the
centre-line of the tunnel in both the two- and the three-dimensional case.
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20 Hz

40 Hz

Fig. 5. Harmonic response of the three-dimensional BE/FE model of a cut-and-cover tunnel. The displacements are scaled by the factor
3 x 10°. Dark and light shades of grey indicate negative and positive vertical displacements, respectively.

The response is calculated at the one-third octave band center frequencies from 4 to 80 Hz. Fig. 4 shows the
superimposed response of the two- and three-dimensional models for results at 10, 20, 40 and 80 Hz in
Model 2. The three-dimensional results have been scaled by a factor of three greater than the two-dimensional
results in order to obtain a similar displacement at the load. The figure clearly shows that the geometric
damping is much stronger in the three-dimensional case than in the two-dimensional one. Thus, at the surface
of the half-space and the tunnel floor, the response in the three-dimensional model is about one to two orders
of magnitude smaller than the response in the two-dimensional case despite the adjustment to make them
similar near to the load.

To give an impression of the nature of the three-dimensional wave propagation, the response in the BE part
of the model is illustrated in Fig. 5 for Models 1-3 at the frequencies 10, 20, 40 and 80 Hz. Note that only the
BE domains used to model the half-space and the foundation stiffening under the walls (Model 2) are shown.
Further, in Model 3 the surface of the ground inside the tunnel lies 1 m below the level in the other two models
due to the presence of the concrete floor, which has been modelled with FEs.

3.2. Response differences due to the design changes

Next, the responses from the three different tunnel structures are compared. In particular the changes in the
response due to the modifications applied to the structure in Models 2 and 3 are analysed. Following the
findings of Ref. [2], that comparisons should be made on the basis of a combination of lateral and vertical
calculated responses, the pseudo-resultant, R, is used,

R=\/|U\I" + U, (10)

The symmetry of the models means that the out-of-plane lateral displacement amplitude Us in the three-
dimensional model is equal to zero on the plane where the results are compared.

For the three-dimensional results, the rms value of the pseudo-resultants along a line parallel to the tunnel
has been used. This corresponds to the response measured at a single location from a series of passing
incoherent sources as a train passes. The results along a line on the surface of the ground and perpendicular to
the tunnel axis are compared with the pseudo-resultants computed with the two-dimensional model.
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is defined by Eq. (11). The results are compared along a line on the ground surface perpendicular to the tunnel axis. The rms value
of the response to nine loads applied along the tunnel has been taken. Lines indicate different frequencies, — (5Hz), — — (10 Hz),
— - (20Hz), - - - (40 Hz); points indicate different tunnel model lengths, ¢ (L =26m), x (L = 50m), and O (L =98 m).

A convergence study of the pseudo-resultant response in the two- and three-dimensional models has been
carried out in order to investigate whether the differences in the response obtained with the two models are
due to errors introduced into the models by their truncation at finite lengths either in:

o the distance from the tunnel to the truncation edge parallel with the tunnel axis (both in the two- and the
three-dimensional tunnel models),
o the length of the modelled tunnel section (only in the three-dimensional model).

As mentioned previously, the impedance mismatch between the modelled half-space and the full space
adopted in the Green’s functions is small. Therefore, convergence is reached with only few elements between
the tunnel and the truncation edge in both the two- and the three-dimensional models. However, in the three-
dimensional model the convergence rate is poor with respect to the length of the modelled tunnel section, see
Fig. 6. In particular the response of the tunnel roof converges slowly as the tunnel model length is increased.
This is due to the strong impedance mismatch between the thin tunnel roof (a plate) and the full space. The
inclusion of small BE domains at the artificial ends of the tunnel roof almost corresponds to the prescription
of Dirichlet conditions U;(x,®) = 0 at the artificial ends of the tunnel roof. This only provides a small
improvement compared with a model in which the continuous tunnel roof is modelled as a plate with finite
length, i.e. Neumann conditions of the kind P;(x,w) = 0 are given on the truncation edge.

In order to provide a better model of the tunnel roof with infinite length along the tunnel, transmitting
boundary conditions based on the Green’s function for a plate could be employed. However, in the present
study use has been made of the small BE domain termination. The response on the roof in the three-
dimensional model should be treated with caution, but as indicated by Fig. 6 there is a good convergence of
the response along the surface of the ground outside the tunnel.

Fig. 7 shows the results of the two- and three-dimensional cut-and-cover models at the frequencies 10, 20, 40
and 80 Hz. As would be expected, there is a general attenuation of the vibration with distance from the centre
of the tunnel in both the two- and the three-dimensional models. For the frequencies 10, 20 and 40 Hz, the
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maximum response is located somewhere on the roof (—6 to 6 m). However, at 80 Hz there is a strong local
amplification in the soil just outside the tunnel. The two- and three-dimensional models predict similar
behaviour particularly at the higher frequencies. This was to be expected since material damping dominates
over geometrical damping at high frequencies. However, Fig. 7 does not show clearly whether the changes are
predicted similarly.

In order to quantify changes in the response, 41, and 43 (expressed in dB) are introduced as the factors of
change of the pseudo-resultant between Models 1, and 2 or 3,

R R
A = 20 1og10(R—(1)) —20log,, (ﬁ) k=23 (11)

Here R; is the pseudo-resultant response in Model 1 at a given point and Ry, is the response in Model 2 or 3.
Finally, Ry = 10~°m is a reference value of the pseudo-resultant. As in Fig. 7, the rms response along a line
parallel to the tunnel has been calculated from the three-dimensional model. Eq. (11) defines a positive 4;, or
Ay3 as a reduction in vibration in Model 2 or 3 compared with Model 1.

Ay, and 43, are calculated for the four ‘points’ shown in Fig. 3. Fig. 7 indicates that the pseudo-resultant
response may change rapidly with distance, particularly at high frequencies so, to get a more stable measure of
the response, the pseudo-resultant has been averaged over three nodes around each location (Fig. 3). The
results are plotted in Fig. 8. They must be interpreted in the light of the findings from the convergence study.
The results of the two-dimensional models are fully converged, i.e. within +0.1dB, for all observation
‘points’. As mentioned previously this is due to the small impedance mismatch between the modelled half-
plane and the full space adopted in the Green’s functions. The results of Fig. 6 suggest that the results of the
three-dimensional model can be regarded converged to within +1dB at Points 3 and 4 on the surface of the
ground outside the tunnel, see Fig. 3. On the tunnel floor, close to the loading, the results are less affected by
the edges of the model and, although not shown in Fig. 6, have been found to be constant to within +0.5dB.
However, on the roof, for the reasons discussed above, the results can only be regarded as having converged to
within +3dB. Thus, at Point 2 the errors due to mesh truncation are comparable to the changes in response to
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changes in the tunnel structure. Hence, only vague conclusions may be drawn from a comparison with the
results of the two-dimensional model in this case.

Almost no change in the response is achieved at 10 Hz and lower frequencies. This observation can be made
in both the two- and three-dimensional models. Only for Point 1, i.e. directly under the load, is there a
consistent, significant change in the response, and only for Model 3. This decrease in response is due to the
installation of the concrete floor. A reduction of 7-8 dB in the response is predicted in the three-dimensional
analysis, whereas the reduction in the two-dimensional case is only about 3—4 dB.

At the surface of the ground ‘far’ from the tunnel (Point 4) the three-dimensional model indicates
a small improvement in the low-frequency range. Installation of the concrete floor (Model 3) is
slightly better than stiffening under the abutment walls (Model 2), though the changes are all below
3dB. This however can be regarded as a significant difference at these locations given the uncer-
tainties identified in Fig. 6. However, at Point 3, close to the tunnel, the soil stiffening is advan-
tageous, whereas the concrete floor leads to a greater proportion of the energy from the source propagating up
through the walls and into the soil nearby. The same trends are observed in the two-dimensional
model, though the changes in the pseudo-resultant responses are less pronounced than in the three-
dimensional case.

At higher frequencies, the agreement between the two models is poorer. At most frequencies there is a weak
correspondence for 4,3; but around 40-60 Hz both models predict a very perceptible vibration level increase of
6 dB on the roof. The results for 4, generally lie closer together. The concrete floor changes the propagation
in the structure and soil much more than the soil stiffening does. Neither of the structural changes actually
provides an improvement; the soil stiffening, indeed, turns out to be generally disadvantageous at frequencies
above 20 Hz.

4. Analysis of a NATM tunnel

Now, a similar study is carried out for a NATM tunnel. The popularity of this method has increased over
the last decades for deep tunnels in soil with medium stiffness, because the construction process is cheaper
than boring as no specialized equipment is necessary. NATM tunnels are dug with the use of standard
excavators, and the concrete lining is cast in situ [7].
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Point 2 Point 3 Point 4

Fig. 9. Layout of the two-dimensional NATM tunnel models. Point forces are applied at the nodes indicated as ‘Point 1. The fully drawn
part represents Model 1, i.e. the reference model. Dashed parts (——) are introduced in Model 2, and Model 3 is identical to Model 1 except
for the tunnel depth which is increased from 15 to 20 m.

4.1. Tunnel structure models

Two changes to a NATM tunnel are considered. For this purpose, three models are analysed, with Model 1
representing the basis for comparison, see Fig. 9.

® Model I: The tunnel is 15m deep, 7m wide and accommodates a single track. The crown forms a circular
arc with a maximum height of 6 m above the tunnel floor. The upper part of the walls and the crown are
lined with concrete having a thickness of 0.5m. The wall thickness is increased linearly inside the tunnel
from 0.5m, 1 m above the floor, to 1 m at the floor. The floor is 15m below the ground surface.

® Model 2: A WIB of stiffened soil is situated 2m below the tunnel floor. The block is 2m deep and 16 m
wide, thus extending 4m on either side of the tunnel. Note that replacement of the original soil with
concrete is unrealistic. Instead, a strengthening of the existing soil in situ by, for example, ‘jet grouting’ [15]
is considered. WIBs have been proposed to reduce low-frequency vibration from a railway track. Amongst
others, Takemiya et al. [16] analysed the effect of a WIB in a railway embankment, and Chouw and Pflanz
[17] found that a WIB in a half-space reduces the far-field vibration from a moving vertical load applied
over it.

® Model 3: The tunnel is deeper in the ground so that the floor is 20 m below the surface. This case tests the
ability to predict the vibration at one tunnel from vibration measurements made at another existing site.

In the two-dimensional analysis, a harmonic vertical strip load of 1 N/m, 3 m wide, is applied on the centre of
the tunnel floor. In the three-dimensional analysis, a load with a total magnitude of 1 N is applied over the
rectangular area 3 x 4m” corresponding to two BEs.

The material properties used in the models are listed in Table 1, and the element meshes of the two-
dimensional models are illustrated in Fig. 9. In these, 15, 2m long elements make up the ground surface on
either side of the plane of symmetry. In the three-dimensional analysis, seven elements with the dimensions
4 x 4m? are used. Numerical experiments show that nodes belonging to these elements work as receiver points
only, thus having negligible influence on the response of the model. Hence, relatively few elements can be used
in the three-dimensional surface model.

The three-dimensional wave propagation pattern in Models 1-3 is illustrated in Fig. 10 at 10, 20, 40 and
80 Hz. The vibration at the surface of the ground is changed dramatically by both structural changes, whereas
only the WIB influences the response at the tunnel floor. Thus in Models 1 and 3, surface waves of the same
character propagate along the floor of the tunnel. Near the walls, the wavelength in the soil is increased due to
interaction with the stiffer structure.

4.2. Response differences due to the design changes
As for the cut-and-cover tunnel, a convergence study has been carried out in order to verify that the

discrepancies between the responses in the two- and three-dimensional models are not due to mesh truncation.
Since the nodes on the surface of the ground have little effect on the response, the truncation edge can be
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Fig. 10. Harmonic response of the three-dimensional BE/FE model of a NATM tunnel. The displacements are scaled by the factor
3% 10°. Dark and light shades indicate negative and positive vertical displacements, respectively.

placed close to the tunnel. Further, the rate of convergence with respect to the tunnel length is much better in
the present case than for the cut-and-cover tunnel model as illustrated in Fig. 11, in which the rms pseudo-
resultants in Models 1 and 3 are compared for the frequency 20 Hz. This stems from the fact that the
impedance of the half-space with the embedded tunnel is close to that of a homogeneous half-space and
therefore similar to that of the full space assumed in the Green’s functions. As indicated in the figure,
the results can be regarded converged to within +1dB for Points 2, 3 and 4 on the surface of the ground, see
Fig. 9. As in the case of the cut-and-cover tunnel, the convergence is better at Point 1 where the load is applied.

Fig. 12 shows the pseudo-resultant response along the ground surface for the NATM tunnel models at 10,
20, 40 and 80 Hz. As before, the rms value for sources along the track is computed for the three-dimensional
model in order to simulate the effect of a passing train. The response is symmetric around the tunnel because
the load is applied symmetrically.

Although a general qualitative agreement in the trends of response with distance between two- and three-
dimensional models exists, differences between the results can clearly be seen. The worst case of disagreement
in this respect is present at 20 Hz where the two-dimensional models show a maximum of vibration over the
tunnel whereas the three-dimensional models all show a minimum there. Similar differences can be found in
the 40 and 80 Hz graphs. The reason for the different behaviour in the two- and three-dimensional models is
the fact that the load in the two-dimensional model is applied in phase at all points along the tunnel, whereas
in the three-dimensional model the load is applied as a number of incoherent sources. This implies that
negative interference between waves emanating from different points along the track does not take place in the
three-dimensional model.

Using the same approach as for the cut-and-cover case, the level difference spectra 4;, and 4,3 at the tunnel
floor and three (averaged) points along the surface (Fig. 9) are presented in Fig. 13. At the tunnel floor (Point
1) the response is almost identical in Models 1 and 3, i.e. the distance to the ground surface has insignificant
effect at the tunnel. The two- and three-dimensional models predict the same qualitative behaviour, but the
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Fig. 11. Factor of change in pseudo-resultant response between NATM tunnel Models 1 and 3 for three-dimensional models with
different lengths, L. 4,3 is defined by Eq. (11). The results are compared along a line on the ground surface perpendicular to the tunnel
axis. The rms value of the response to nine loads applied along the tunnel for the frequency 20 Hz has been taken.
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Fig. 12. Pseudo-resultant response along the surface of the ground over the NATM tunnel versus distance from the tunnel centre-line.

Lines indicate two-dimensional results, — (Model 1), — — (Model 2), — - (Model 3); points indicate three-dimensional results, « (Model 1),
O (Model 2), and x (Model 3).

change in response is predicted to be slightly greater in the latter case. The wave-impeding block leads to a
decrease in the response under the load in the frequency range up to 60 Hz, but an increase at 80 Hz. Here both
the two- and three-dimensional models predict resonance in the soil above the WIB. On the surface, however,
the WIB has little effect, whereas the increase of tunnel depth results in greater changes.

In the case of both changes to the geometry, immediately above the tunnel (Point 2) the two- and three-
dimensional models predict similar changes for frequencies below 31.5 Hz; but in most cases the change is very
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Fig. 13. Level difference spectra in the pseudo-resultants of the NATM tunnel models: [0 (4,,—3-D), x (4,,—2-D), O (4,5—3-D)
and * (A13—2-D)A

small. Although many of the points above this frequency can be said to agree, there are a number of instances
where there is a significant difference at particular frequencies. Again, this is a result of the fact that the load in
the two- and three-dimensional models is applied as a strip load and a number of incoherent sources,
respectively.

5. Conclusions

Two- and three-dimensional combined finite and boundary element analyses have been carried out for two
railway tunnel structures. The aim has been to investigate, what information can reliably be gained from a
two-dimensional model to aid a tunnel design process or an environmental vibration prediction based on
‘correcting’ measured data from another tunnel in similar ground.

In the case of both types of tunnel examined, only small changes in the vibration response are predicted
from the structural changes made. This also makes it difficult to calculate reliable changes in vibration level
because of the necessary truncations of the model surfaces. This applies to the three-dimensional model
in particular. The changes although of only a few dB are realistic and furthermore are significant in
the perception of vibration. The studies therefore do represent a realistic situation for which the models could
be used.

For both tunnels there is a similar trend in the wave pattern in the two- and three-dimensional models. Both
the two- and the three-dimensional models show only small changes to the response at the surface of the
ground, particularly at low frequencies. Qualitatively, a two-dimensional model is shown by these two
examples to be useful to indicate whether reductions in the vibration can be achieved when the structure is
changed. Apparently the two-dimensional model produces more useable results for this purpose when the
structure is buried in the ground than when a structure near the surface is analysed. Further, the accuracy
increases with the distance from the tunnel. In addition to this, a three-dimensional coupled BE and FE model
of a cut-and-cover tunnel is not easily made. The main difficulty lies in a proper modelling of the continuous
roof, and future models may be improved by the implementation of transmitting boundary conditions
for a plate.

When deciding whether a two- or three-dimensional model should be used, the computational cost may be
of importance. The analysis of the tunnel models in the present work takes about five seconds per frequency in
the two-dimensional case, whereas the computation time for the three-dimensional models is about 2h per
frequency on a P4-2.8 GHz PC. Thus, a full three-dimensional analysis takes approximately 1000—2000 times
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longer than the two-dimensional analysis. This difference is increased when larger numerical models are
considered.

Combined with the observation that two-dimensional models provide results that qualitatively agree with
those of three-dimensional models at most frequencies, two-dimensional models may be preferred. However,
the models do show significant differences in the predicted responses. The conclusion based on the experience
of the present analyses is that a full three-dimensional model is required for absolute vibration transmission
predictions and is to be preferred in order to obtain more accurate estimates of the changes in response due to
changes in tunnel structure or depth.
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